Surface terms and the Gauss-Bonnet Hamiltonian

نویسنده

  • Antonio Padilla
چکیده

We derive the gravitational Hamiltonian starting from the Gauss-Bonnet action, keeping track of all surface terms. This is done using the language of orthonormal frames and forms to keep things as tidy as possible. The surface terms in the Hamiltonian give a remarkably simple expression for the total energy of a spacetime. This expression is consistent with energy expressions found in hep-th/0212292. However, we can apply our results whatever the choice of background and whatever the symmetries of the spacetime. [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Emergent Universe Scenario in the Einstein-Gauss-Bonnet Gravity with Dilaton

We obtain cosmological solutions which admit emergent universe (EU) scenario in four dimensions in the framework of Einstein Gauss-Bonnet gravity coupled with a dilaton field. We determine the coupling parameter of the Gauss-Bonnet terms and the dilaton to obtain EU scenario. The corresponding dilaton potential is obtained. It is found that the Gauss-Bonnet (GB) terms coupled with dilaton field...

متن کامل

The M 2 - brane Solution of Heterotic M - theory with the Gauss - Bonnet R 2 terms

We consider the effective action of M-theory compactified on a S/Z2 orbifold with R2 interaction in the Gauss-Bonnet combination. We derive equations of motion with source terms arising from the Gauss-Bonnet terms and find the M2-brane solution up to order κ2/3. It receives a correction which depends on the orbifold coordinate in the same form as the gauge 5-brane solution. ∗[email protected]...

متن کامل

Induced Curvature in Brane Worlds by Surface Terms in String Effective Actions with Higher-Curvature Corrections

In string-inspired effective actions, representing the low-energy bulk dynamics of brane/string theories, the higher-curvature ghost-free Gauss-Bonnet combination is obtained by local field redefinitions which leave the (perturbative) string amplitudes invariant. We show that such redefinitions lead to surface terms which induce curvature on the brane world boundary of the bulk spacetime. ∗ ema...

متن کامل

Gauss-bonnet-chern Formulae and Related Topics for Curved Riemannian Manifolds

In this paper, we survey recent results on Gauss-Bonnet-Chern formulae and related issues for closed Riemannian manifolds with variable curvature. Among other things, we address the following problem: “if M is an oriented 2n-dimensional closed manifold with non-positive curvature, then is it true that its Euler number χ(M) satisfies the inequality (−1)χ(M) ≥ 0?” We will present some partial ans...

متن کامل

Fractional Hamiltonian Monodromy from a Gauss-manin Monodromy

Fractional Hamiltonian Monodromy is a generalization of the notion of Hamiltonian Monodromy, recently introduced by N. N. Nekhoroshev, D. A. Sadovskíı and B. I. Zhilinskíı for energy-momentum maps whose image has a particular type of non-isolated singularities. In this paper, we analyze the notion of Fractional Hamiltonian Monodromy in terms of the Gauss-Manin Monodromy of a Riemann surface con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003